К 2030 году в России все отходы будут сортироваться, а половина из них — перерабатываться. Это следует из документа, подписанного президентом Владимиром Путиным. Как этому помогут роботы, Plus-one.ru рассказал Александр Неволин, основатель компании Nevlabs, разрабатывающей оборудование для сортировки мусора на базе искусственного интеллекта.
— Для сортировки отходов мы используем искусственный интеллект, а именно — сверточные нейронные сети. Их идею человек подсмотрел у природы. Дело в том, что зрение людей и животных тоже представляет собой многослойную нейронную сеть. Первый слой распознаёт самые простые объекты, например, линии и точки. Далее нейронная сеть, используя информацию от предыдущего слоя, распознаёт уже более сложные объекты. Например, среди множества линий она может выделить какие-то геометрические фигуры. Так происходит вплоть до конечного слоя, который выдаёт ответ, что за объект перед нами.
Нейронные сети так же, как и наш мозг, учатся на примерах. Мы демонстрируем им множество фотографий с пометками: к примеру, «это прозрачная ПЭТ-бутылка» или «это зелёная ПЭТ-бутылка с термоусадочной этикеткой». В показанных изображениях нейронная сеть находит закономерности. Это позволяет ей распознавать те объекты, которые она раньше не видела.
Как искусственный интеллект становится умнее
— Чтобы обучить нейронную сеть распознавать мусор, необходимо собрать большую базу фотографий. Для этого на заводах устанавливаются камеры — как правило, прямо над конвейерами действующих сортировочных линий. Желательно снимать мусор в условиях, в которых будет работать установка с нейросетью. Это позволит учесть плотность потока, тип освещения и другие факторы, которые влияют на точность распознавания отходов. Следующий этап — ручная разметка фотографий. Для каждого класса отходов нужно от 5 до 10 тысяч изображений. Всего классов около 10 — итого необходимо разметить сто тысяч снимков.
Для этого мы привлекаем надомных работников. Они регистрируются на специальном сайте и проходят вводный курс о разновидностях отходов, после чего им необходимо выполнить тест. Если его результаты нас устраивают, человек допускается к работе. Также в системе предусмотрен выборочный контроль разметки: пользователи проверяют работу друг друга, чтобы исключить возможность ошибки.
Как правило, 100 тысяч изображений работники размечают за неделю. Далее мы обучаем нейронную сеть, многократно демонстрируя ей фотографии. При использовании высокопроизводительной видеокарты тренировка занимает две-три недели. Такой подход применяют и для последующего дообучения — производители товаров часто меняют упаковку, поэтому нейронные сети желательно обновлять минимум раз в полгода.
Для этого со всех сортировочных установок через встроенный интернет-модем собираются фотографии проходящих через них отходов. Во-первых, это позволяет выполнять ручной контроль качества распознавания. Во-вторых, чтобы поддерживать знания нейросети о видах отходов, такие фотографии можно выборочно размечать и добавлять к обучающим материалам. Поскольку данные с сортировочных установок собираются на сервер централизованно, нейросеть одинаково успешно распознаёт мусор как из Москвы, так и из Владивостока.
Прочесть публикацию полностью можно по ссылке.